Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Cardiology ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: covidwho-20244488

RESUMEN

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied HEK293 cell line stably expressing hERG-WT channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel and the whole-cell patch clamp were utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment of Brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.

2.
Front Genet ; 12: 728960, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1417081

RESUMEN

Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.

3.
Food Chem Toxicol ; 145: 111767, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-778851

RESUMEN

Currently, coronavirus disease 2019 (COVID-19), has posed an imminent threat to global public health. Although some current therapeutic agents have showed potential prevention or treatment, a growing number of associated adverse events have occurred on patients with COVID-19 in the course of medical treatment. Therefore, a comprehensive assessment of the safety profile of therapeutic agents against COVID-19 is urgently needed. In this study, we proposed a network-based framework to identify the potential side effects of current COVID-19 drugs in clinical trials. We established the associations between 116 COVID-19 drugs and 30 kinds of human tissues based on network proximity and gene-set enrichment analysis (GSEA) approaches. Additionally, we focused on four types of drug-induced toxicities targeting four tissues, including hepatotoxicity, renal toxicity, lung toxicity, and neurotoxicity, and validated our network-based predictions by preclinical and clinical evidence available. Finally, we further performed pharmacovigilance analysis to validate several drug-tissue toxicities via data mining adverse event reporting data, and we identified several new drug-induced side effects without labeling in Food and Drug Administration (FDA) drug instructions. Overall, this study provides forceful approaches to assess potential side effects on COVID-19 drugs, which will be helpful for their safe use in clinical practice and promoting the discovery of antiviral therapeutics against SARS-CoV-2.


Asunto(s)
Antineoplásicos/efectos adversos , Antivirales/efectos adversos , Infecciones por Coronavirus/tratamiento farmacológico , Factores Inmunológicos/efectos adversos , Farmacovigilancia , Neumonía Viral/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Ensayos Clínicos como Asunto , Humanos , Factores Inmunológicos/uso terapéutico , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA